@article {120, title = {Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region.}, journal = {Cell Mol Life Sci}, volume = {78}, year = {2021}, month = {2021 Oct}, pages = {6669-6687}, abstract = {

The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.

}, keywords = {Animals, Animals, Genetically Modified, Embryo, Nonmammalian, Gene Expression Regulation, Developmental, Genome, Genomics, Heart Septal Defects, Heart Valves, Myocardium, Organogenesis, Pacemaker, Artificial, Wnt Signaling Pathway, Zebrafish, Zebrafish Proteins}, issn = {1420-9071}, doi = {10.1007/s00018-021-03939-y}, author = {Abu Nahia, Karim and Migda{\l}, Maciej and Quinn, T Alexander and Poon, Kar-Lai and {\L}api{\'n}ski, Maciej and Sulej, Agata and Liu, Jiandong and Mondal, Shamba S and Pawlak, Micha{\l} and Bugajski, {\L}ukasz and Piwocka, Katarzyna and Brand, Thomas and Kohl, Peter and Korzh, Vladimir and Winata, Cecilia} } @article {121, title = {Transcriptome profile of the sinoatrial ring reveals conserved and novel genetic programs of the zebrafish pacemaker.}, journal = {BMC Genomics}, volume = {22}, year = {2021}, month = {2021 Oct 02}, pages = {715}, abstract = {

BACKGROUND: Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended.

RESULTS: To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology.

CONCLUSION: Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.

}, keywords = {Animals, Heart Rate, Humans, Sinoatrial Node, Transcriptome, Zebrafish}, issn = {1471-2164}, doi = {10.1186/s12864-021-08016-z}, author = {Minhas, Rashid and Loeffler-Wirth, Henry and Siddiqui, Yusra H and Obr{\k e}bski, Tomasz and Vashisht, Shikha and Nahia, Karim Abu and Paterek, Alexandra and Brzozowska, Angelika and Bugajski, Lukasz and Piwocka, Katarzyna and Korzh, Vladimir and Binder, Hans and Winata, Cecilia Lanny} } @article {113, title = {A novel conserved enhancer at zebrafish zic3 and zic6 loci drives neural expression.}, journal = {Dev Dyn}, volume = {248}, year = {2019}, month = {2019 09}, pages = {837-849}, abstract = {

BACKGROUND: Identifying enhancers and deciphering their putative roles represent a major step to better understand the mechanism of metazoan gene regulation, development, and the role of regulatory elements in disease. Comparative genomics and transgenic assays have been used with some success to identify critical regions that are involved in regulating the spatiotemporal expression of genes during embryogenesis.

RESULTS: We identified two novel tetrapod-teleost conserved noncoding elements within the vicinity of the zic3 and zic6 loci in the zebrafish genome and demonstrated their ability to drive tissue-specific expression in a transgenic zebrafish assay. The syntenic analysis and robust green fluorescent expression in the developing habenula in the stable transgenic line were correlated with known sites of endogenous zic3 and zic6 expression.

CONCLUSION: This transgenic line that expresses green fluorescent protein in the habenula is a valuable resource for studying a specific population of cells in the zebrafish central nervous system. Our observations indicate that a genomic sequence that is conserved between humans and zebrafish acts as an enhancer that likely controls zic3 and zic6 expression.

}, keywords = {Animals, Animals, Genetically Modified, Conserved Sequence, Embryonic Development, Enhancer Elements, Genetic, Gene Expression Regulation, Developmental, Green Fluorescent Proteins, Habenula, Homeodomain Proteins, Humans, Nervous System, Repressor Proteins, Transcription Factors, Zebrafish, Zebrafish Proteins}, issn = {1097-0177}, doi = {10.1002/dvdy.69}, author = {Minhas, Rashid and Paterek, Aleksandra and {\L}api{\'n}ski, Maciej and Baza{\l}a, Micha{\l} and Korzh, Vladimir and Winata, Cecilia L} } @article {Lanny Winata:2015-04-01T00:00:00:1389-2029:117, title = {Changing Faces of Transcriptional Regulation Reflected by Zic3}, journal = {Current Genomics}, volume = {16}, year = {2015}, month = {02/2015}, pages = {117-127}, abstract = {

The advent of genomics in the study of developmental mechanisms has brought a trove of information on gene datasets and regulation during development, where the Zic family of zinc-finger proteins plays an important role. Genomic analysis of the modes of action of Zic3 in pluripotent cells demonstrated its requirement for maintenance of stem cells pluripotency upon binding to the proximal regulatory regions (promoters) of genes associated with cell pluripotency (Nanog, Sox2, Oct4, etc.) as well as cell cycle, proliferation, oncogenesis and early embryogenesis. In contrast, during gastrulation and neurulation Zic3 acts by binding the distal regulatory regions (enhancers, etc) associated with control of gene transcription in the Nodal and Wnt signaling pathways, including genes that act to break body symmetry. This illustrates a general role of Zic3 as a transcriptional regulator that acts not only alone, but in many instances in conjunction with other transcription factors. The latter is done by binding to adjacent sites in the context of multi-transcription factor complexes associated with regulatory elements.

}, keywords = {ZDGaffiliated}, url = {http://www.ingentaconnect.com/content/ben/cg/2015/00000016/00000002/art00011}, author = {Winata, Cecilia L and Kondrychyn, Igor and Korzh, Vladimir} } @article {74, title = {Impaired development of neural-crest cell-derived organs and intellectual disability caused by MED13L haploinsufficiency.}, journal = {Hum Mutat}, volume = {35}, year = {2014}, month = {2014 Nov}, pages = {1311-20}, abstract = {

MED13L is a component subunit of the Mediator complex, an important regulator of transcription that is highly conserved across eukaryotes. Here, we report MED13L disruption in a translocation t(12;19) breakpoint of a patient with Pierre-Robin syndrome, moderate intellectual disability, craniofacial anomalies, and muscular defects. The phenotype is similar to previously described patients with MED13L haploinsufficiency. Knockdown of MED13L orthologue in zebrafish, med13b, showed early defective migration of cranial neural crest cells (NCCs) that contributed to cartilage structure deformities in the later stage, recapitulating craniofacial anomalies seen in human patients. Notably, we observed abnormal distribution of developing neurons in different brain regions of med13b morphant embryos, which could be rescued upon introduction of full-length human MED13L mRNA. To compare with mammalian system, we suppressed MED13L expression by short-hairpin RNA in ES-derived human neural progenitors, and differentiated them into neurons. Transcriptome analysis revealed differential expression of components of Wnt and FGF signaling pathways in MED13L-deficient neurons. Our finding provides a novel insight into the mechanism of overlapping phenotypic outcome targeting NCCs derivatives organs in patients with MED13L haploinsufficiency, and emphasizes a clinically recognizable syndromic phenotype in these patients.

}, keywords = {Animals, Cell Differentiation, Cell Movement, Child, Preschool, Chromosome Breakpoints, Disease Models, Animal, Embryonic Stem Cells, Female, Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Developmental, Gene Knockdown Techniques, Genetic Association Studies, Haploinsufficiency, Humans, Intellectual Disability, Mediator Complex, Neural Crest, Neurons, Phenotype, RNA, Messenger, Sequence Analysis, DNA, Transcriptome, Translocation, Genetic, Zebrafish}, issn = {1098-1004}, doi = {10.1002/humu.22636}, author = {Utami, Kagistia Hana and Winata, Cecilia L and Hillmer, Axel M and Aksoy, Irene and Long, Hoang Truong and Liany, Herty and Chew, Elaine G Y and Mathavan, Sinnakaruppan and Tay, Stacey K H and Korzh, Vladimir and Sarda, Pierre and Davila, Sonia and Cacheux, Valere} } @article {33, title = {Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish.}, journal = {PLoS Genet}, volume = {9}, year = {2013}, month = {2013 Oct}, pages = {e1003852}, abstract = {

Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003852}, author = {Winata, Cecilia L and Kondrychyn, Igor and Kumar, Vibhor and Srinivasan, Kandhadayar G and Orlov, Yuriy and Ravishankar, Ashwini and Prabhakar, Shyam and Stanton, Lawrence W and Korzh, Vladimir and Mathavan, Sinnakaruppan} } @article {72, title = {Wnt signaling is required for early development of zebrafish swimbladder.}, journal = {PLoS One}, volume = {6}, year = {2011}, month = {2011}, pages = {e18431}, abstract = {

BACKGROUND: Wnt signaling plays critical roles in mammalian lung development. However, Wnt signaling in the development of the zebrafish swimbladder, which is considered as a counterpart of mammalian lungs, have not been explored. To investigate the potential conservation of signaling events in early development of the lung and swimbladder, we wish to address the question whether Wnt signaling plays a role in swimbladder development.

METHODOLOGY/PRINCIPAL FINDINGS: For analysis of zebrafish swimbladder development, we first identified, by whole-mount in situ hybridization (WISH), has2 as a mesenchymal marker, sox2 as the earliest epithelial marker, as well as hprt1l and elovl1a as the earliest mesothelial markers. We also demonstrated that genes encoding Wnt signaling members Wnt5b, Fz2, Fz7b, Lef1, Tcf3 were expressed in different layers of swimbladder. Then we utilized the heat-shock inducible transgenic lines hs:Dkk1-GFP and hs:ΔTcf-GFP to temporarily block canonical Wnt signaling. Inhibition of canonical Wnt signaling at various time points disturbed precursor cells specification, organization, anterioposterior patterning, and smooth muscle differentiation in all three tissue layers of swimbladder. These observations were also confirmed by using a chemical inhibitor (IWR-1) of Wnt signaling. In addition, we found that Hedgehog (Hh) signaling was activated by canonical Wnt signaling and imposed a negative feedback on the latter.

SIGNIFICANCE/CONCLUSION: We first provided a new set of gene markers for the three tissue layers of swimbladder in zebrafish and demonstrated the expression of several key genes of Wnt signaling pathway in developing swimbladder. Our functional analysis data indicated that Wnt/β-catenin signaling is required for swimbladder early development and we also provided evidence for the crosstalk between Wnt and Hh signaling in early swimbladder development.

}, keywords = {Air Sacs, Animals, Animals, Genetically Modified, Apoptosis, Cell Differentiation, Cell Proliferation, Embryo, Nonmammalian, Epithelium, Gene Expression Regulation, Developmental, Gene Knockdown Techniques, Genetic Markers, Green Fluorescent Proteins, Heat-Shock Response, Hedgehog Proteins, Mesoderm, Models, Biological, Morphogenesis, Myocytes, Smooth Muscle, Recombinant Fusion Proteins, Reproducibility of Results, Signal Transduction, Wnt Proteins, Zebrafish, Zebrafish Proteins}, issn = {1932-6203}, doi = {10.1371/journal.pone.0018431}, author = {Yin, Ao and Korzh, Svitlana and Winata, Cecilia L and Korzh, Vladimir and Gong, Zhiyuan} } @article {36, title = {Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition.}, journal = {Genome Res}, volume = {21}, year = {2011}, month = {2011 Aug}, pages = {1328-38}, abstract = {

Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50\%-60\%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish.

}, keywords = {Animals, Base Sequence, Genome, RNA, Messenger, RNA, Messenger, Stored, Sequence Analysis, RNA, Transcriptome, Zebrafish, Zebrafish Proteins, Zygote}, issn = {1549-5469}, doi = {10.1101/gr.116012.110}, author = {Aanes, H{\r a}vard and Winata, Cecilia L and Lin, Chi Ho and Chen, Jieqi P and Srinivasan, Kandhadayar G and Lee, Serene G P and Lim, Adrian Y M and Hajan, Hajira Shreen and Collas, Philippe and Bourque, Guillaume and Gong, Zhiyuan and Korzh, Vladimir and Alestr{\"o}m, Peter and Mathavan, Sinnakaruppan} } @article {73, title = {The interaction of epithelial Ihha and mesenchymal Fgf10 in zebrafish esophageal and swimbladder development.}, journal = {Dev Biol}, volume = {359}, year = {2011}, month = {2011 Nov 15}, pages = {262-76}, abstract = {

Developmental patterning and growth of the vertebrate digestive and respiratory tracts requires interactions between the epithelial endoderm and adjacent mesoderm. The esophagus is a specialized structure that connects the digestive and respiratory systems and its normal development is critical for both. Shh signaling from the epithelium regulates related aspects of mammalian and zebrafish digestive organ development and has a prominent effect on esophageal morphogenesis. The mechanisms underlying esophageal malformations, however, are poorly understood. Here, we show that zebrafish Ihha signaling from the epithelium acting in parallel, but independently of Shh, controls epithelial and mesenchymal cell proliferation and differentiation of smooth muscles and neurons in the gut and swimbladder. In zebrafish ihha mutants, the esophageal and swimbladder epithelium is dysmorphic, and expression of fgf10 in adjacent mesenchymal cells is affected. Analysis of the development of the esophagus and swimbladder in fgf10 mutant daedalus (dae) and compound dae/ihha mutants shows that the Ihha-Fgf10 regulatory interaction is realized through a signaling feedback loop between the Ihha-expressing epithelium and Fgf10-expressing mesenchyme. Disruption of this loop further affects the esophageal and swimbladder epithelium in ihha mutants, and Ihha acts in parallel to but independently of Shha in this process. These findings contribute to the understanding of epithelial-mesenchymal interactions and highlight an interaction between Hh and Fgf signaling pathways during esophagus and swimbladder development.

}, keywords = {Air Sacs, Animals, Animals, Genetically Modified, Cell Proliferation, Embryo, Nonmammalian, Epithelium, Esophagus, Female, Fibroblast Growth Factor 10, Gastrointestinal Tract, Gene Expression Regulation, Developmental, Gene Knockdown Techniques, Green Fluorescent Proteins, Hedgehog Proteins, In Situ Hybridization, Male, Membrane Proteins, Mesoderm, Microscopy, Confocal, Mutation, Protein Binding, Receptors, Cell Surface, Signal Transduction, Zebrafish, Zebrafish Proteins}, issn = {1095-564X}, doi = {10.1016/j.ydbio.2011.08.024}, author = {Korzh, Svitlana and Winata, Cecilia Lanni and Zheng, Weiling and Yang, Shulan and Yin, Ao and Ingham, Phillip and Korzh, Vladimir and Gong, Zhiyuan} } @article {71, title = {Expression of components of Wnt and Hedgehog pathways in different tissue layers during lung development in Xenopus laevis.}, journal = {Gene Expr Patterns}, volume = {10}, year = {2010}, month = {2010 Oct-Dec}, pages = {338-44}, abstract = {

Although Wnt and Hedgehog (Hh) signaling pathways play important roles in mouse lung development, these have not been explored in the development of Xenopus lung. This may be due to the lack of specific molecular markers for different layers of tissue in Xenopus lung and/or insufficient knowledge on expression patterns of Wnt and Hh signaling components in Xenopus lung. In this study, we first described the early morphogenesis of Xenopus laevis lung by using surfactant protein C (sftpc) as a marker of lung epithelium and compared it with the expression patterns of several genes of Wnt and Hh pathways in Xenopus lungs. Our data showed that wnt7b was expressed in the entire lung epithelium from stage 37 to stage 45, while two other Wnt signaling components, wnt5a and wif1 (wnt inhibitory factor 1), were expressed in the mesenchyme layer of the entire lungs through stages 39-41. We also found that sonic hedgehog (shh) was expressed at stage 41 only in the anterior, but not in the posterior part of the lungs. These results show the expression of wnt5a, wnt7b, wif1 and shh in different layers of tissue of Xenopus lungs at early developmental stages, which implies different roles of these genes in the early development of Xenopus lungs. Our study for the first time defined specific molecular markers for description of early lung development in Xenopus, as well as provided information about expression of components of Wnt and Hh pathways in early Xenopus lungs, which should be useful for future functional studies.

}, keywords = {Animals, Epithelium, Gene Expression Regulation, Developmental, Genetic Markers, Hedgehog Proteins, In Situ Hybridization, Lung, Mesoderm, Morphogenesis, Polymerase Chain Reaction, Pulmonary Surfactants, Signal Transduction, Wnt Proteins, Xenopus Proteins, Xenopus laevis}, issn = {1872-7298}, doi = {10.1016/j.gep.2010.07.005}, author = {Yin, Ao and Winata, Cecilia L and Korzh, Svitlana and Korzh, Vladimir and Gong, Zhiyuan} } @article {68, title = {The role of vasculature and blood circulation in zebrafish swimbladder development.}, journal = {BMC Dev Biol}, volume = {10}, year = {2010}, month = {2010}, pages = {3}, abstract = {

BACKGROUND: Recently we have performed a detailed analysis of early development of zebrafish swimbladder, a homologous organ of tetrapod lung; however, the events of swimbladder development are still poorly characterized. Many studies have implicated the role of vascular system in development of many organs in vertebrates. As the swimbladder is lined with an intricate network of blood capillaries, it is of interest to investigate the role of the vascular system during early development of swimbladder.

RESULTS: To investigate the role of endothelial cells (ECs) and blood circulation during development of the swimbladder, phenotypes of swimbladder were analysed at three different stages (approximately 2, 3 and 5 dpf [day postfertilization]) in cloche (clo) mutant and Tnnt2 morphants, in the background of transgenic lines Et(krt4:EGFP)sq33-2 and Et(krt4:EGFP)sqet3 which express EGFP in the swimbladder epithelium and outer mesothelium respectively. Analyses of the three tissue layers of the swimbladder were performed using molecular markers hb9, fgf10a, acta2, and anxa5 to distinguish epithelium, mesenchyme, and outer mesothelium. We showed that the budding stage was independent of ECs and blood flow, while early epithelial growth, mesenchymal organization and its differentiation into smooth muscle, as well as outer mesothelial organization, were dependent on ECs. Blood circulation contributed to later stage of epithelial growth, smooth muscle differentiation, and organization of the outer mesothelium. Inflation of the swimbladder was also affected as a result of absence of ECs and blood flow.

CONCLUSION: Our data demonstrated that the vascular system, though not essential in swimbladder budding, plays an important role in the development of the swimbladder starting from the early growth stage, including mesenchyme organization and smooth muscle differentiation, and outer mesothelial organization, which in turn may be essential for the function of the swimbladder as reflected in its eventual inflation.

}, keywords = {Air Sacs, Animals, Animals, Genetically Modified, Blood Circulation, Endothelial Cells, Green Fluorescent Proteins, Troponin T, Zebrafish, Zebrafish Proteins}, issn = {1471-213X}, doi = {10.1186/1471-213X-10-3}, author = {Winata, Cecilia L and Korzh, Svetlana and Kondrychyn, Igor and Korzh, Vladimir and Gong, Zhiyuan} } @article {67, title = {Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers.}, journal = {Dev Biol}, volume = {331}, year = {2009}, month = {2009 Jul 15}, pages = {222-36}, abstract = {

The swimbladder is a hydrostatic organ in fish postulated as a homolog of the tetrapod lung. While lung development has been well studied, the molecular mechanism of swimbladder development is essentially uncharacterized. In the present study, swimbladder development in zebrafish was analyzed by using several molecular markers: hb9 (epithelium), fgf10a and acta2 (mesenchyme), and anxa5 (mesothelium), as well as in vivo through enhancer trap transgenic lines Et(krt4:EGFP)(sq33-2) and Et(krt4:EGFP)(sqet3) that showed strong EGFP expression in the swimbladder epithelium and outer mesothelium respectively. We defined three phases of swimbladder development: epithelial budding between 36 and 48 hpf, growth with the formation of two additional mesodermal layers up to 4.5 dpf, and inflation of posterior and anterior chambers at 4.5 and 21 dpf respectively. Similar to those in early lung development, conserved expression of Hedgehog (Hh) genes, shha and ihha, in the epithelia, and Hh receptor genes, ptc1 and ptc2, as well as fgf10a in mesenchyme was observed. By analyzing several mutants affecting Hh signaling and Ihha morphants, we demonstrated an essential role of Hh signaling in swimbladder development. Furthermore, time-specific Hh inhibition by cyclopamine revealed different requirements of Hh signaling in the formation and organization of all three tissue layers of swimbladder.

}, keywords = {Air Sacs, Animals, Antigens, Differentiation, Body Patterning, Embryo, Nonmammalian, Hedgehog Proteins, Mutation, Signal Transduction, Zebrafish, Zebrafish Proteins}, issn = {1095-564X}, doi = {10.1016/j.ydbio.2009.04.035}, author = {Winata, Cecilia L and Korzh, Svetlana and Kondrychyn, Igor and Zheng, Weiling and Korzh, Vladimir and Gong, Zhiyuan} } @article {66, title = {Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish.}, journal = {BMC Dev Biol}, volume = {8}, year = {2008}, month = {2008}, pages = {84}, abstract = {

BACKGROUND: Early events in vertebrate liver development have been the major focus in previous studies, however, late events of liver organogenesis remain poorly understood. Liver vasculogenesis in vertebrates occurs through the interaction of endoderm-derived liver epithelium and mesoderm-derived endothelial cells (ECs). In zebrafish, although it has been found that ECs are not required for liver budding, how and when the spatio-temporal pattern of liver growth is coordinated with ECs remains to be elucidated.

RESULTS: To study the process of liver development and vasculogenesis in vivo, a two-color transgenic zebrafish line Tg(lfabf:dsRed; elaA:EGFP) was generated and named LiPan for liver-specific expression of DsRed RFP and exocrine pancreas-specific expression of GFP. Using the LiPan line, we first followed the dynamic development of liver from live embryos to adult and showed the formation of three distinct yet connected liver lobes during development. The LiPan line was then crossed with Tg(fli1:EGFP)y1 and vascular development in the liver was traced in vivo. Liver vasculogenesis started at 55-58 hpf when ECs first surrounded hepatocytes from the liver bud surface and then invaded the liver to form sinusoids and later the vascular network. Using a novel non-invasive and label-free fluorescence correction spectroscopy, we detected blood circulation in the liver starting at approximately 72 hpf. To analyze the roles of ECs and blood circulation in liver development, both cloche mutants (lacking ECs) and Tnnt2 morphants (no blood circulation) were employed. We found that until 70 hpf liver growth and morphogenesis depended on ECs and nascent sinusoids. After 72 hpf, a functional sinusoidal network was essential for continued liver growth. An absence of blood circulation in Tnnt2 morphants caused defects in liver vasculature and small liver.

CONCLUSION: There are two phases of liver development in zebrafish, budding and growth. In the growth phase, there are three distinct stages: avascular growth between 50-55 hpf, where ECs are not required; endothelium-dependent growth, where ECs or sinusoids are required for liver growth between 55-72 hpf before blood circulation in liver sinusoids; and circulation-dependent growth, where the circulation is essential to maintain vascular network and to support continued liver growth after 72 hpf.

}, keywords = {Animals, Animals, Genetically Modified, Endoderm, Endothelial Cells, Endothelium, Vascular, Liver, Mesoderm, Neovascularization, Physiologic, Zebrafish}, issn = {1471-213X}, doi = {10.1186/1471-213X-8-84}, author = {Korzh, Svetlana and Pan, Xiufang and Garcia-Lecea, Marta and Winata, Cecilia L and Pan, Xiaotao and Wohland, Thorsten and Korzh, Vladimir and Gong, Zhiyuan} } @article {65, title = {Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver.}, journal = {Physiol Genomics}, volume = {27}, year = {2006}, month = {2006 Nov 27}, pages = {351-61}, abstract = {

Arsenic is a prominent environmental toxicant and carcinogen; however, its molecular mechanism of toxicity and carcinogenicity remains poorly understood. In this study, we performed microarray-based expression profiling on liver of zebrafish exposed to 15 parts/million (ppm) arsenic [As(V)] for 8-96 h to identify global transcriptional changes and biological networks involved in arsenic-induced adaptive responses in vivo. We found that there was an increase of transcriptional activity associated with metabolism, especially for biosyntheses, membrane transporter activities, cytoplasm, and endoplasmic reticulum in the 96 h of arsenic treatment, while transcriptional programs for proteins in catabolism, energy derivation, and stress response remained active throughout the arsenic treatment. Many differentially expressed genes encoding proteins involved in heat shock proteins, DNA damage/repair, antioxidant activity, hypoxia induction, iron homeostasis, arsenic metabolism, and ubiquitin-dependent protein degradation were identified, suggesting strongly that DNA and protein damage as a result of arsenic metabolism and oxidative stress caused major cellular injury. These findings were comparable with those reported in mammalian systems, suggesting that the zebrafish liver coupled with the available microarray technology present an excellent in vivo toxicogenomic model for investigating arsenic toxicity. We proposed an in vivo, acute arsenic-induced adaptive response model of the zebrafish liver illustrating the relevance of many transcriptional activities that provide both global and specific information of a coordinated adaptive response to arsenic in the liver.

}, keywords = {Adaptation, Physiological, Animals, Arsenic, Down-Regulation, Gene Expression Profiling, Gene Expression Regulation, Genomics, Liver, Male, Metabolic Networks and Pathways, Oligonucleotide Array Sequence Analysis, Transcription, Genetic, Up-Regulation, Zebrafish}, issn = {1531-2267}, doi = {10.1152/physiolgenomics.00201.2005}, author = {Lam, Siew Hong and Winata, Cecilia L and Tong, Yan and Korzh, Svetlana and Lim, Wen San and Korzh, Vladimir and Spitsbergen, Jan and Mathavan, Sinnakarupan and Miller, Lance D and Liu, Edison T and Gong, Zhiyuan} }