@article {125, title = {Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 Jul}, pages = {1037-1050}, abstract = {

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.

}, keywords = {Animals, Chromatin, Databases, Genetic, Gene Expression Regulation, Developmental, Genome, Genomics, Humans, Mice, Molecular Sequence Annotation, Organogenesis, Regulatory Sequences, Nucleic Acid, Zebrafish, Zebrafish Proteins}, issn = {1546-1718}, doi = {10.1038/s41588-022-01089-w}, author = {Baranasic, Damir and H{\"o}rtenhuber, Matthias and Balwierz, Piotr J and Zehnder, Tobias and Mukarram, Abdul Kadir and Nepal, Chirag and V{\'a}rnai, Csilla and Hadzhiev, Yavor and Jimenez-Gonzalez, Ada and Li, Nan and Wragg, Joseph and D{\textquoteright}Orazio, Fabio M and Relic, Dorde and Pachkov, Mikhail and D{\'\i}az, Noelia and Hern{\'a}ndez-Rodr{\'\i}guez, Benjam{\'\i}n and Chen, Zelin and Stoiber, Marcus and Dong, Micha{\"e}l and Stevens, Irene and Ross, Samuel E and Eagle, Anne and Martin, Ryan and Obasaju, Oluwapelumi and Rastegar, Sepand and McGarvey, Alison C and Kopp, Wolfgang and Chambers, Emily and Wang, Dennis and Kim, Hyejeong R and Acemel, Rafael D and Naranjo, Silvia and {\L}api{\'n}ski, Maciej and Chong, Vanessa and Mathavan, Sinnakaruppan and Peers, Bernard and Sauka-Spengler, Tatjana and Vingron, Martin and Carninci, Piero and Ohler, Uwe and Lacadie, Scott Allen and Burgess, Shawn M and Winata, Cecilia and van Eeden, Freek and Vaquerizas, Juan M and G{\'o}mez-Skarmeta, Jos{\'e} Luis and Onichtchouk, Daria and Brown, Ben James and Bogdanovic, Ozren and van Nimwegen, Erik and Westerfield, Monte and Wardle, Fiona C and Daub, Carsten O and Lenhard, Boris and M{\"u}ller, Ferenc} } @article {120, title = {Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region.}, journal = {Cell Mol Life Sci}, volume = {78}, year = {2021}, month = {2021 Oct}, pages = {6669-6687}, abstract = {

The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.

}, keywords = {Animals, Animals, Genetically Modified, Embryo, Nonmammalian, Gene Expression Regulation, Developmental, Genome, Genomics, Heart Septal Defects, Heart Valves, Myocardium, Organogenesis, Pacemaker, Artificial, Wnt Signaling Pathway, Zebrafish, Zebrafish Proteins}, issn = {1420-9071}, doi = {10.1007/s00018-021-03939-y}, author = {Abu Nahia, Karim and Migda{\l}, Maciej and Quinn, T Alexander and Poon, Kar-Lai and {\L}api{\'n}ski, Maciej and Sulej, Agata and Liu, Jiandong and Mondal, Shamba S and Pawlak, Micha{\l} and Bugajski, {\L}ukasz and Piwocka, Katarzyna and Brand, Thomas and Kohl, Peter and Korzh, Vladimir and Winata, Cecilia} } @article {65, title = {Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver.}, journal = {Physiol Genomics}, volume = {27}, year = {2006}, month = {2006 Nov 27}, pages = {351-61}, abstract = {

Arsenic is a prominent environmental toxicant and carcinogen; however, its molecular mechanism of toxicity and carcinogenicity remains poorly understood. In this study, we performed microarray-based expression profiling on liver of zebrafish exposed to 15 parts/million (ppm) arsenic [As(V)] for 8-96 h to identify global transcriptional changes and biological networks involved in arsenic-induced adaptive responses in vivo. We found that there was an increase of transcriptional activity associated with metabolism, especially for biosyntheses, membrane transporter activities, cytoplasm, and endoplasmic reticulum in the 96 h of arsenic treatment, while transcriptional programs for proteins in catabolism, energy derivation, and stress response remained active throughout the arsenic treatment. Many differentially expressed genes encoding proteins involved in heat shock proteins, DNA damage/repair, antioxidant activity, hypoxia induction, iron homeostasis, arsenic metabolism, and ubiquitin-dependent protein degradation were identified, suggesting strongly that DNA and protein damage as a result of arsenic metabolism and oxidative stress caused major cellular injury. These findings were comparable with those reported in mammalian systems, suggesting that the zebrafish liver coupled with the available microarray technology present an excellent in vivo toxicogenomic model for investigating arsenic toxicity. We proposed an in vivo, acute arsenic-induced adaptive response model of the zebrafish liver illustrating the relevance of many transcriptional activities that provide both global and specific information of a coordinated adaptive response to arsenic in the liver.

}, keywords = {Adaptation, Physiological, Animals, Arsenic, Down-Regulation, Gene Expression Profiling, Gene Expression Regulation, Genomics, Liver, Male, Metabolic Networks and Pathways, Oligonucleotide Array Sequence Analysis, Transcription, Genetic, Up-Regulation, Zebrafish}, issn = {1531-2267}, doi = {10.1152/physiolgenomics.00201.2005}, author = {Lam, Siew Hong and Winata, Cecilia L and Tong, Yan and Korzh, Svetlana and Lim, Wen San and Korzh, Vladimir and Spitsbergen, Jan and Mathavan, Sinnakarupan and Miller, Lance D and Liu, Edison T and Gong, Zhiyuan} }