@article {125, title = {Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements.}, journal = {Nat Genet}, volume = {54}, year = {2022}, month = {2022 Jul}, pages = {1037-1050}, abstract = {

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.

}, keywords = {Animals, Chromatin, Databases, Genetic, Gene Expression Regulation, Developmental, Genome, Genomics, Humans, Mice, Molecular Sequence Annotation, Organogenesis, Regulatory Sequences, Nucleic Acid, Zebrafish, Zebrafish Proteins}, issn = {1546-1718}, doi = {10.1038/s41588-022-01089-w}, author = {Baranasic, Damir and H{\"o}rtenhuber, Matthias and Balwierz, Piotr J and Zehnder, Tobias and Mukarram, Abdul Kadir and Nepal, Chirag and V{\'a}rnai, Csilla and Hadzhiev, Yavor and Jimenez-Gonzalez, Ada and Li, Nan and Wragg, Joseph and D{\textquoteright}Orazio, Fabio M and Relic, Dorde and Pachkov, Mikhail and D{\'\i}az, Noelia and Hern{\'a}ndez-Rodr{\'\i}guez, Benjam{\'\i}n and Chen, Zelin and Stoiber, Marcus and Dong, Micha{\"e}l and Stevens, Irene and Ross, Samuel E and Eagle, Anne and Martin, Ryan and Obasaju, Oluwapelumi and Rastegar, Sepand and McGarvey, Alison C and Kopp, Wolfgang and Chambers, Emily and Wang, Dennis and Kim, Hyejeong R and Acemel, Rafael D and Naranjo, Silvia and {\L}api{\'n}ski, Maciej and Chong, Vanessa and Mathavan, Sinnakaruppan and Peers, Bernard and Sauka-Spengler, Tatjana and Vingron, Martin and Carninci, Piero and Ohler, Uwe and Lacadie, Scott Allen and Burgess, Shawn M and Winata, Cecilia and van Eeden, Freek and Vaquerizas, Juan M and G{\'o}mez-Skarmeta, Jos{\'e} Luis and Onichtchouk, Daria and Brown, Ben James and Bogdanovic, Ozren and van Nimwegen, Erik and Westerfield, Monte and Wardle, Fiona C and Daub, Carsten O and Lenhard, Boris and M{\"u}ller, Ferenc} } @article {121, title = {Transcriptome profile of the sinoatrial ring reveals conserved and novel genetic programs of the zebrafish pacemaker.}, journal = {BMC Genomics}, volume = {22}, year = {2021}, month = {2021 Oct 02}, pages = {715}, abstract = {

BACKGROUND: Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended.

RESULTS: To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology.

CONCLUSION: Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.

}, keywords = {Animals, Heart Rate, Humans, Sinoatrial Node, Transcriptome, Zebrafish}, issn = {1471-2164}, doi = {10.1186/s12864-021-08016-z}, author = {Minhas, Rashid and Loeffler-Wirth, Henry and Siddiqui, Yusra H and Obr{\k e}bski, Tomasz and Vashisht, Shikha and Nahia, Karim Abu and Paterek, Alexandra and Brzozowska, Angelika and Bugajski, Lukasz and Piwocka, Katarzyna and Korzh, Vladimir and Binder, Hans and Winata, Cecilia Lanny} } @article {75, title = {DANIO-CODE: Toward an Encyclopedia of DNA Elements in Zebrafish.}, journal = {Zebrafish}, volume = {13}, year = {2016}, month = {2016 Feb}, pages = {54-60}, abstract = {

The zebrafish has emerged as a model organism for genomics studies. The symposium "Toward an encyclopedia of DNA elements in zebrafish" held in London in December 2014, was coorganized by Ferenc M{\"u}ller and Fiona Wardle. This meeting is a follow-up of a similar previous workshop held 2 years earlier and represents a push toward the formalization of a community effort to annotate functional elements in the zebrafish genome. The meeting brought together zebrafish researchers, bioinformaticians, as well as members of established consortia, to exchange scientific findings and experience, as well as to discuss the initial steps toward the formation of a DANIO-CODE consortium. In this study, we provide the latest updates on the current progress of the consortium{\textquoteright}s efforts, opening up a broad invitation to researchers to join in and contribute to DANIO-CODE.

}, keywords = {ZDGaffiliated}, issn = {1557-8542}, doi = {10.1089/zeb.2015.1179}, author = {Tan, Haihan and Onichtchouk, Daria and Winata, Cecilia} } @article {33, title = {Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish.}, journal = {PLoS Genet}, volume = {9}, year = {2013}, month = {2013 Oct}, pages = {e1003852}, abstract = {

Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.

}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003852}, author = {Winata, Cecilia L and Kondrychyn, Igor and Kumar, Vibhor and Srinivasan, Kandhadayar G and Orlov, Yuriy and Ravishankar, Ashwini and Prabhakar, Shyam and Stanton, Lawrence W and Korzh, Vladimir and Mathavan, Sinnakaruppan} }