@article {126, title = {Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish.}, journal = {Life Sci Alliance}, volume = {6}, year = {2023}, month = {2023 Jan}, abstract = {

Most mitochondrial proteins are encoded by nuclear genes, synthetized in the cytosol and targeted into the organelle. To characterize the spatial organization of mitochondrial gene products in zebrafish (), we sequenced RNA from different cellular fractions. Our results confirmed the presence of nuclear-encoded mRNAs in the mitochondrial fraction, which in unperturbed conditions, are mainly transcripts encoding large proteins with specific properties, like transmembrane domains. To further explore the principles of mitochondrial protein compartmentalization in zebrafish, we quantified the transcriptomic changes for each subcellular fraction triggered by the mutation, causing the disorders in the mitochondrial protein import. Our results indicate that the proteostatic stress further restricts the population of transcripts on the mitochondrial surface, allowing only the largest and the most evolutionary conserved proteins to be synthetized there. We also show that many nuclear-encoded mitochondrial transcripts translated by the cytosolic ribosomes stay resistant to the global translation shutdown. Thus, vertebrates, in contrast to yeast, are not likely to use localized translation to facilitate synthesis of mitochondrial proteins under proteostatic stress conditions.

}, keywords = {Animals, Genes, Mitochondrial, Mitochondria, Mitochondrial Proteins, Nuclear Proteins, RNA, Messenger, Saccharomyces cerevisiae, Zebrafish}, issn = {2575-1077}, doi = {10.26508/lsa.202201514}, author = {Uszczynska-Ratajczak, Barbara and Sugunan, Sreedevi and Kwiatkowska, Monika and Migdal, Maciej and Carbonell-Sala, Silvia and Sokol, Anna and Winata, Cecilia L and Chacinska, Agnieszka} } @article {112, title = {Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development.}, journal = {Genome Res}, volume = {29}, year = {2019}, month = {2019 03}, pages = {506-519}, abstract = {

Organogenesis involves dynamic regulation of gene transcription and complex multipathway interactions. Despite our knowledge of key factors regulating various steps of heart morphogenesis, considerable challenges in understanding its mechanism still exist because little is known about their downstream targets and interactive regulatory network. To better understand transcriptional regulatory mechanism driving heart development and the consequences of its disruption in vivo, we performed time-series analyses of the transcriptome and genome-wide chromatin accessibility in isolated cardiomyocytes (CMs) from wild-type zebrafish embryos at developmental stages corresponding to heart tube morphogenesis, looping, and maturation. We identified genetic regulatory modules driving crucial events of heart development that contained key cardiac TFs and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. Loss of function of cardiac TFs Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in chromatin accessibility profile, indicating their role in heart development. Among regions with differential chromatin accessibility in mutants were highly conserved noncoding elements that represent putative enhancers driving heart development. The most prominent gene expression changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred between heart tube morphogenesis and looping, and were associated with metabolic shift and hematopoietic/cardiac fate switch during CM maturation. Our results revealed the dynamic regulatory landscape throughout heart development and identified interactive molecular networks driving key events of heart morphogenesis.

}, keywords = {Animals, Cells, Cultured, Chromatin, Chromatin Assembly and Disassembly, Gene Expression Regulation, Developmental, Gene Regulatory Networks, Heart, Myocytes, Cardiac, Transcription Factors, Transcriptome, Zebrafish, Zebrafish Proteins}, issn = {1549-5469}, doi = {10.1101/gr.244491.118}, author = {Pawlak, Michal and Kedzierska, Katarzyna Z and Migdal, Maciej and Nahia, Karim Abu and Ramilowski, Jordan A and Bugajski, Lukasz and Hashimoto, Kosuke and Marconi, Aleksandra and Piwocka, Katarzyna and Carninci, Piero and Winata, Cecilia L} }