@article {117, title = {Exploring Translational Control of Maternal mRNAs in Zebrafish.}, journal = {Methods Mol Biol}, volume = {2218}, year = {2021}, month = {2021}, pages = {367-380}, abstract = {

The study of translational regulation requires reliable measurement of both mRNA levels and protein synthesis. Cytoplasmic polyadenylation is a prevalent mode of translational regulation during oogenesis and early embryogenesis. Here the length of the poly(A) tail of an mRNA is coupled to its translatability. We describe a protocol to identify translationally regulated genes and measure their translation rate in the early zebrafish embryo using genome-wide polysome profiling. This protocol relies on the isolation of mRNA by means of an rRNA depletion strategy, which avoids capture bias due to short poly(A) tail that can occur when using conventional oligo(dT)-based methods. We also present a simple PCR-based method to measure the poly(A) tail length of selected mRNAs.

}, keywords = {Animals, Cytoplasm, Embryo, Nonmammalian, Embryonic Development, Oocytes, Oogenesis, Poly A, Polyadenylation, Protein Biosynthesis, RNA, Messenger, Stored, Zebrafish}, issn = {1940-6029}, doi = {10.1007/978-1-0716-0970-5_29}, author = {Winata, Cecilia Lanny and {\L}api{\'n}ski, Maciej and Ismail, Hisyam and Mathavan, Sinnakaruppan and Sampath, Prabha} } @article {36, title = {Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition.}, journal = {Genome Res}, volume = {21}, year = {2011}, month = {2011 Aug}, pages = {1328-38}, abstract = {

Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50\%-60\%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish.

}, keywords = {Animals, Base Sequence, Genome, RNA, Messenger, RNA, Messenger, Stored, Sequence Analysis, RNA, Transcriptome, Zebrafish, Zebrafish Proteins, Zygote}, issn = {1549-5469}, doi = {10.1101/gr.116012.110}, author = {Aanes, H{\r a}vard and Winata, Cecilia L and Lin, Chi Ho and Chen, Jieqi P and Srinivasan, Kandhadayar G and Lee, Serene G P and Lim, Adrian Y M and Hajan, Hajira Shreen and Collas, Philippe and Bourque, Guillaume and Gong, Zhiyuan and Korzh, Vladimir and Alestr{\"o}m, Peter and Mathavan, Sinnakaruppan} }