@article {68, title = {The role of vasculature and blood circulation in zebrafish swimbladder development.}, journal = {BMC Dev Biol}, volume = {10}, year = {2010}, month = {2010}, pages = {3}, abstract = {

BACKGROUND: Recently we have performed a detailed analysis of early development of zebrafish swimbladder, a homologous organ of tetrapod lung; however, the events of swimbladder development are still poorly characterized. Many studies have implicated the role of vascular system in development of many organs in vertebrates. As the swimbladder is lined with an intricate network of blood capillaries, it is of interest to investigate the role of the vascular system during early development of swimbladder.

RESULTS: To investigate the role of endothelial cells (ECs) and blood circulation during development of the swimbladder, phenotypes of swimbladder were analysed at three different stages (approximately 2, 3 and 5 dpf [day postfertilization]) in cloche (clo) mutant and Tnnt2 morphants, in the background of transgenic lines Et(krt4:EGFP)sq33-2 and Et(krt4:EGFP)sqet3 which express EGFP in the swimbladder epithelium and outer mesothelium respectively. Analyses of the three tissue layers of the swimbladder were performed using molecular markers hb9, fgf10a, acta2, and anxa5 to distinguish epithelium, mesenchyme, and outer mesothelium. We showed that the budding stage was independent of ECs and blood flow, while early epithelial growth, mesenchymal organization and its differentiation into smooth muscle, as well as outer mesothelial organization, were dependent on ECs. Blood circulation contributed to later stage of epithelial growth, smooth muscle differentiation, and organization of the outer mesothelium. Inflation of the swimbladder was also affected as a result of absence of ECs and blood flow.

CONCLUSION: Our data demonstrated that the vascular system, though not essential in swimbladder budding, plays an important role in the development of the swimbladder starting from the early growth stage, including mesenchyme organization and smooth muscle differentiation, and outer mesothelial organization, which in turn may be essential for the function of the swimbladder as reflected in its eventual inflation.

}, keywords = {Air Sacs, Animals, Animals, Genetically Modified, Blood Circulation, Endothelial Cells, Green Fluorescent Proteins, Troponin T, Zebrafish, Zebrafish Proteins}, issn = {1471-213X}, doi = {10.1186/1471-213X-10-3}, author = {Winata, Cecilia L and Korzh, Svetlana and Kondrychyn, Igor and Korzh, Vladimir and Gong, Zhiyuan} } @article {66, title = {Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish.}, journal = {BMC Dev Biol}, volume = {8}, year = {2008}, month = {2008}, pages = {84}, abstract = {

BACKGROUND: Early events in vertebrate liver development have been the major focus in previous studies, however, late events of liver organogenesis remain poorly understood. Liver vasculogenesis in vertebrates occurs through the interaction of endoderm-derived liver epithelium and mesoderm-derived endothelial cells (ECs). In zebrafish, although it has been found that ECs are not required for liver budding, how and when the spatio-temporal pattern of liver growth is coordinated with ECs remains to be elucidated.

RESULTS: To study the process of liver development and vasculogenesis in vivo, a two-color transgenic zebrafish line Tg(lfabf:dsRed; elaA:EGFP) was generated and named LiPan for liver-specific expression of DsRed RFP and exocrine pancreas-specific expression of GFP. Using the LiPan line, we first followed the dynamic development of liver from live embryos to adult and showed the formation of three distinct yet connected liver lobes during development. The LiPan line was then crossed with Tg(fli1:EGFP)y1 and vascular development in the liver was traced in vivo. Liver vasculogenesis started at 55-58 hpf when ECs first surrounded hepatocytes from the liver bud surface and then invaded the liver to form sinusoids and later the vascular network. Using a novel non-invasive and label-free fluorescence correction spectroscopy, we detected blood circulation in the liver starting at approximately 72 hpf. To analyze the roles of ECs and blood circulation in liver development, both cloche mutants (lacking ECs) and Tnnt2 morphants (no blood circulation) were employed. We found that until 70 hpf liver growth and morphogenesis depended on ECs and nascent sinusoids. After 72 hpf, a functional sinusoidal network was essential for continued liver growth. An absence of blood circulation in Tnnt2 morphants caused defects in liver vasculature and small liver.

CONCLUSION: There are two phases of liver development in zebrafish, budding and growth. In the growth phase, there are three distinct stages: avascular growth between 50-55 hpf, where ECs are not required; endothelium-dependent growth, where ECs or sinusoids are required for liver growth between 55-72 hpf before blood circulation in liver sinusoids; and circulation-dependent growth, where the circulation is essential to maintain vascular network and to support continued liver growth after 72 hpf.

}, keywords = {Animals, Animals, Genetically Modified, Endoderm, Endothelial Cells, Endothelium, Vascular, Liver, Mesoderm, Neovascularization, Physiologic, Zebrafish}, issn = {1471-213X}, doi = {10.1186/1471-213X-8-84}, author = {Korzh, Svetlana and Pan, Xiufang and Garcia-Lecea, Marta and Winata, Cecilia L and Pan, Xiaotao and Wohland, Thorsten and Korzh, Vladimir and Gong, Zhiyuan} }