RNA editing was described for the first time in the 1980s, so it isn’t a new discovery. Since then, RNA editing was characterised in numerous organisms and it has been reported to function in an array of biological processes. RNA editing affects physiology and behaviour of animals from insect to human, by altering both, the sequence and structure of nervous system components. The most interesting roles of RNA editing described so far are: determination of castes in ants, adaptation to cold in octopuses. Most of all, RNA editing is crucial for correct development of the brain and nervous system of animals.
In addition, RNA editing was proposed to protect human (and other primates) genome against the expansions of Alu elements. Alu elements are repetitive sequences that are very abundant in our genome. What is more, Alu elements are believed to destabilise the genome by copying themselves across the chromosomes through the process of retrotransposition (transposition involving RNA). ADAR, one of the enzymes responsible for RNA editing, was found to bind Alu transcripts, edit their sequence and therefore block subsequent transposition to new genomic locations.
Besides extensive research and multiple proposed functions in various organisms, there is still no consensus for the purpose of RNA editing. We would like to study the role of RNA editing in developing embryo. Obviously, we cannot conduct this study in human, therefore we will use zebrafish (Danio rerio), as it is easy to maintain in the lab and gives access to very early developmental stages, while being relatively close to human (human share most of the genes with zebrafish).
We’ll to characterise RNA editing in zebrafish, by sequencing parental genomes and the transcriptomes of developing embryos at several stages of development. As RNA editing is expected to create difference between transcripts and genome sequence, subsequent comparison of transcripts with genome sequence will allow genome-wide detection of RNA editing. This will allow us not only to create most comprehensive RNA editing catalogue of developing embryo, but also to identify the changes in RNA editing throughout embryo development.
During this project, I’ve developed novel bioinformatics methods to map RNA editing sites in the transcripts using data generated from next-generation sequencing (NGS) experiments. This method allowed us to identify transcripts edited by ADAR proteins. Many serve as key regulators of early development, responsible, for instance, for the normal definition of the anterior-posterior axis of the body. Interestingly, when we disturbed this protein in embryos, we obtained larvae with heavily affected body axis. Finally, we have created zebrafish mutant lacking Adar protein, that will allow further studies of this process. A detailed investigation into the role of RNA editing in early vertebrate development will contribute to a better understanding of gene expression regulation during embryonic growth.
I have been working on my research at the Laboratory of Zebrafish Developmental Genomics, lead by Dr Cecilia Winata at the International Institute of Molecular and Cell Biology in Warsaw. Apart from giving me access to cutting-edge technologies in molecular biology and promoting my personal growth, the POLONEZ programme has provided me with great opportunity to cooperate with researchers from all around the globe.
This project has received funding in National Science Centre (Poland) Polonez-1 framework from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778.